skip to main content


Search for: All records

Creators/Authors contains: "Atekwana, Estella A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    Within the Western Branch of the East African Rift (EAR), volcanism is highly localized, which is distinct from the voluminous magmatism seen throughout the Eastern Branch of the EAR. A possible mechanism for the source of melt beneath the EAR is decompression melting in response to lithospheric stretching. However, the presence of pre-rift magmatism in both branches of the EAR suggest an important role of plume-lithosphere interactions, which validates the presence of voluminous magmatism in the Eastern Branch, but not the localized magmatism in the Western Branch. We hypothesize that the interaction of a thermally heterogeneous asthenosphere (plume material) with the base of the lithosphere enables localization of deep melt sources beneath the Western Branch where there are sharp variations in lithospheric thickness. To test our hypothesis, we investigate sublithospheric mantle flow beneath the Rungwe Volcanic Province (RVP), which is the southernmost volcanic center in the Western Branch. We use seismically constrained lithospheric thickness and sublithospheric mantle structure to develop an instantaneous 3D thermomechanical model of tomography-based convection (TBC) with melt generation beneath the RVP using ASPECT. Shear wave velocity anomalies suggest excess temperatures reach ∼250 K beneath the RVP. We use the excess temperatures to constrain parameters for melt generation beneath the RVP and find that melt generation occurs at a maximum depth of ∼140 km. The TBC models reveal mantle flow patterns not evident in lithospheric modulated convection (LMC) that do not incorporate upper mantle constraints. The LMC model indicates lateral mantle flow at the base of the lithosphere over a longer interval than the TBC model, which suggests that mantle tractions from LMC might be overestimated. The TBC model provides higher melt fractions with a slightly displaced melting region when compared to LMC models. Our results suggest that upwellings from a thermally heterogeneous asthenosphere distribute and localize deep melt sources beneath the Western Branch in locations where there are sharp variations in lithospheric thickness. Even in the presence of a uniform lithospheric thickness in our TBC models, we still find a characteristic upwelling and melt localization beneath the RVP, which suggest that sublithospheric heterogeneities exert a dominant control on upper mantle flow and melt localization than lithospheric thickness variations. Our TBC models demonstrate the need to incorporate upper mantle constraints in mantle convection models and have global implications in that small-scale convection models without upper mantle constraints should be interpreted with caution.

     
    more » « less
  2. Geophysical investigations documenting enhanced magnetic susceptibility (MS) within the water table fluctuation zone at hydrocarbon contaminated sites suggest that MS can be used as a proxy for investigating microbial mediated iron reduction during intrinsic bioremediation. Here, we investigated the microbial community composition over a 5-year period at a hydrocarbon-contaminated site that exhibited transient elevated MS responses. Our objective was to determine the key microbial populations in zones of elevated MS. We retrieved sediment cores from the petroleum-contaminated site near Bemidji, MN, United States, and performed MS measurements on these cores. We also characterized the microbial community composition by high-throughput 16S rRNA gene amplicon sequencing from samples collected along the complete core length. Our spatial and temporal analysis revealed that the microbial community composition was generally stable throughout the period of investigation. In addition, we observed distinct vertical redox zonations extending from the upper vadose zone into the saturated zone. These distinct redox zonations were concomitant with the dominant microbial metabolic processes as follows: (1) the upper vadose zone was dominated by aerobic microbial populations; (2) the lower vadose zone was dominated by methanotrophic populations, iron reducers and iron oxidizers; (3) the smear zone was dominated by iron reducers; and (4) the free product zone was dominated by syntrophic and methanogenic populations. Although the common notion is that high MS values are caused by high magnetite concentrations that can be biotically formed through the activities of iron-reducing bacteria, here we show that the highest magnetic susceptibilities were measured in the free-phase petroleum zone, where a methanogenic community was predominant. This field study may contribute to the emerging knowledge that methanogens can switch their metabolism from methanogenesis to iron reduction with associated magnetite precipitation in hydrocarbon contaminated sediments. Thus, geophysical methods such as MS may help to identify zones where iron cycling/reduction by methanogens is occurring. 
    more » « less
  3. Abstract

    Iron mineral transformations occurring in hydrocarbon‐contaminated sites are linked to the biodegradation of the hydrocarbons. At a hydrocarbon‐contaminated site near Bemidji, Minnesota, USA, measurements of magnetic susceptibility (MS) are useful for monitoring the natural attenuation of hydrocarbons related to iron cycling. However, a transient MS, previously observed at the site, remains poorly understood and the iron mineral phases acting as reactants and products associated with this MS perturbation remain largely unknown. To address these unknowns, we acquired mineral magnetism measurements, including hysteresis loops, backfield curves, and isothermal remanent magnetizations on sediment core samples retrieved from the site and magnetite‐filled mineral packets installed within the aquifer. Our data show that the core samples and magnetite packs display decreasing magnetization with time and that this loss in magnetization is accompanied by increasing bulk coercivity consistent with decreased average grain size and/or partial oxidation. Low‐temperature magnetometry on all samples displayed behavior consistent with magnetite, but samples within the plume also show evidence of maghemitization. This interpretation is supported by the occurrence of shrinkage cracks on the surface of the grains imaged via scanning electron microscopy. Magnetite transformation to maghemite typically occurs under oxic conditions, here, we propose that maghemitization occurs within the anoxic portions of the plume via microbially mediated anaerobic oxidation. Mineral dissolution also occurs within the plume. Microorganisms capable of such anaerobic oxidation have been identified within other areas at the Bemidji site, but additional microbiological studies are needed to link specific anaerobic iron oxidizers with this loss of magnetization.

     
    more » « less
  4. Abstract

    The Rukwa and North Malawi Rift Segments (RNMRS) both define a major rift‐oblique segment of the East African Rift System and are often regarded as discrete rifts due to the presence of the uplifted Mbozi block between them. Here we investigate the influence of basement fabrics on the coupling and linkage of border faults across an interrift transfer zone between discrete juvenile rift segments. We utilized satellite digital elevation model to investigate the morphological architecture of the rift domains and aeromagnetic data to assess the relationships (plan view) between the rift structures and the prerift basement fabrics. Our results show that the present‐day morphology of the RNMRS is characterized by along‐rift alternation of rift shoulder polarity, characteristic of coupled rift segments. Interpretation of filtered aeromagnetic maps along the boundaries of the RNMRS reveals striking alignment of the rift‐bounding faults with colinear NW‐SE trending preexisting basement fabrics. We find that rift coupling along the NE boundary of the Mbozi transfer zone is accommodated by fault‐assisted magma plumbing, whereas coupling along the SW boundary is accommodated by strike‐slip and oblique‐normal faulting that reactivated the Proterozoic Mughese shear zone, within the collisional boundary between the Tanzania craton and the Bangweulu cratonic block. Further, we show how the configuration of the basement fabrics may influence the formation of rift bifurcation across inter‐rift transfer zones. We suggest that the structural connectivity of the boundary faults along the RNMRS and their alignment with colinear basement fabrics demonstrate the influence of structural inheritance on the amalgamation of approaching rift segments.

     
    more » « less